The RNA binding protein KSRP destabilizes GAP-43 mRNA to limit axonal elongation in cultured hippocampal neurons
نویسنده
چکیده
The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE) containing mRNAs. Although KSRP is expressed in the developing and mature nervous system, very little is known about its role in regulating gene expression in the brain. In this study, we utilized in vitro binding and decay studies to examine whether KSRP regulates the stability of the GAP-43 transcript, an ARE-containing neuronal mRNA whose protein product plays a role in axonal growth and synaptic plasticity. We found KSRP destabilizes GAP-43 mRNA by binding to the GAP-43 ARE,
منابع مشابه
KSRP Modulation of GAP-43 mRNA Stability Restricts Axonal Outgrowth in Embryonic Hippocampal Neurons
The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE)-containing mRNAs. Although KSRP is expressed in the nervous system, very little is known about its role in neurons. In this study, we examined whether KSRP regulates the stability of the ARE-containing GAP-43 mRNA. We found that KSRP destabilizes this mRNA by binding to its ARE, a process that requires th...
متن کاملA cytoplasmic variant of the KH-type splicing regulatory protein serves as a decay-promoting factor for phosphoglycerate kinase 2 mRNA in murine male germ cells
Phosphoglycerate kinase 2 (PGK2) is a germ cell-specific protein whose mRNA is translationally regulated in the mammalian testis. Using RNA affinity chromatography with the 3'-untranslated region (UTR) of Pgk2 mRNA and adult testis extracts, several associated proteins including a novel isoform of the AU-rich element RNA-binding protein and KH-type splicing regulatory protein (KSRP) were identi...
متن کاملAxonally synthesized β-actin and GAP-43 proteins support distinct modes of axonal growth.
Increasing evidence points to the importance of local protein synthesis for axonal growth and responses to axotomy, yet there is little insight into the functions of individual locally synthesized proteins. We recently showed that expression of a reporter mRNA with the axonally localizing β-actin mRNA 3'UTR competes with endogenous β-actin and GAP-43 mRNAs for binding to ZBP1 and axonal localiz...
متن کاملLimited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity.
Subcellular localization of mRNAs is regulated by RNA-protein interactions. Here, we show that introduction of a reporter mRNA with the 3'UTR of β-actin mRNA competes with endogenous mRNAs for binding to ZBP1 in adult sensory neurons. ZBP1 is needed for axonal localization of β-actin mRNA, and introducing GFP with the 3'UTR of β-actin mRNA depletes axons of endogenous β-actin and GAP-43 mRNAs a...
متن کاملIn vivo post-transcriptional regulation of GAP-43 mRNA by overexpression of the RNA-binding protein HuD.
HuD is a neuronal-specific RNA-binding protein that binds to and stabilizes the mRNAs of growth-associated protein-43 (GAP-43) and other neuronal proteins. HuD expression increases during brain development, nerve regeneration, and learning and memory, suggesting that this protein is important for controlling gene expression during developmental and adult plasticity. To examine the function of H...
متن کامل